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1. INTRODUCTION: COEXISTENT OBSERVABLES

The question on the possibility of measuring together two or more physi-
cal quantities lies at the hearth of quantum mechanics. Various notions and for-
mulations have been employed to investigate this issue. von Neumann’s (1955)
analysis of simultaneous measurability of physical quantities in terms of commuta-
tivity of the self-adjoint operators representing those quantities is the starting point
of much of the subsequent work. In particular, the investigations of Varadarajan
(1962), Gudder (1968), Hardegree (1977), Pulmaar{@980), and Ylinen (1985)
constitute an important line of research following von Neumann’s approach.

The representation of observables as positive operator measures forces one to
go beyond von Neumann’s framework. Moreover, the simultaneity of the involved
measurements, that is, the fact that the measurements are performed at the same
time point, is, perhaps, not the most crucial aspect of this problem. Therefore,
in that wider context, the notion of coexistence of observables has been chosen
to describe the physical possibility of measuring together two or more quantities.
This conceptis due to@ither Ludwig (1964) and it was further elaborated e.g., in
Ludwig (1967), Hellwig (1969), Neumann (1970), and Kraus (1983). An extensive
operational analysis of this notion is presented in Ludwig (1983).

1This paper was presented at Quantum Composite Systems 2002, Ustron, Poland, Sept. 3-7, 2002.
2Department of Physics, University of Turku, FIN-20014 Turku, Finland; e-mail: pekka.lahti@utu.fi.
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Let H be a complex separable Hilbert spacé}) the set of bounded oper-
ators on, 2 a nonempty set, and a sigma algebra of subsets@f We call a
positive normalized operator measilte A — L(H) an observable and we refer
to (22, A) as the value space &.

Let E, E;, and E, be any three observables with the value spa€gsA),
(21, A1), and €2, A), letran E) = {E(X)|X € A} denote the range d&.

Definition1.1. Observable&; : A; — L(H)andE;: A, — L(H) are coexistent
if there is an observable: A — L(H) such that

ran (E;) Uran (Ez) < ran (E),
that is, for eachX € A;, andY € Ay, E1(X) = E(Zx), andEx(Y) = E(Zy) for
someZy, Zy € A.

The notion of coexistence of observables is a rather general notion and it
seems to be open to characterizations only under further specifications. They will
be studied next.

2. FUNCTIONALLY COEXISTENT OBSERVABLES

Definition 2.1. Observable&; : A; — L(H)andE,: A, — L(H) are functions
of an observabl& : A — L(H) if there are (measurable) functiofis: Q@ — Q;
and f, : Q@ — Q5 such that for eaclX € A1, Y € Ay,

Ex(X) = E(f;1(X)),  Ea(Y) = E(f;(Y)).
In that case we say th&; and E, are functionally coexistent.
As an immediate observation, one has the following proposition:

Proposition 2.2. Functionally coexistent observables are coexistent.

It is an open question whether coexistent observables are functionally co-
existent. In what follows we shall investigate conditions under which coexistent
observables are functionally coexistent and we shall work out some characteriza-
tions for functional coexistence. We start with another simple observation.

Proposition 2.3. Two-valued observables;End E, are coexistent if and only
if they are functionally coexistent.

Proof: To demonstrate this fact, I, '} and {&, £’} be two point value
sets of the observablds; and E,, with ran (E;) = {O, A1, | — A4, 1} and ran
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(E2) = {0, Az, | — Ay, I}, respectively, and leE be an observable such that
E(X) = A; and E(Y) = A,. Consider the partitiorR = {XNY, X' NY, XN
Y’, X’ NY’} of the value spac& of E into disjoint.4-sets, and let 1> E(X N
Y), 2~ E(X'NY), 3~ E(XNY’), 4> E(X'NY’) constitute a correspond-
ing coarsegrained observalii® of E. The mapsf; : 1, 3 ;2, 4+ ', and

fo 11,2 ;3,4 &', allow one to writeA; = ER(fl‘l(a))) =E(XNY)+
E(XNY’) and A, = E™( f{l(S)) = E(XNY)+ E(X'NY), showing that the
two-valued observables are functionally coexistent. O

Let (21 x 2, A; x Ay) denote the product space of the measurable spaces
(€21, A1) and €22, A2), with A1 x Ay = {(X, Y)|X € A1, Y € Az}

Definition 2.4. A positive operator functio : A; x A, — L(H) is a positive
operator bimeasure, if for each e A;, Y € A, the partial functions

A2 Y = B(X,Y) € L(H),
A1 3 X = B(X,Y) € L(H),

are positive operator measures B2, 22) = |, we say thatB is a biobserv-
able. Observableg; : A; — L(H) andE; : A, — L(H) have a biobservable
if there is a positive operator bimeasuBe: A; x A, — L(H) such that for all
XeALY e A,

E1(X) = B(X, 2),
Ex(Y) = B(Q1, Y).

To combine observables into new observables, biobservables, or joint ob-
servables, to be defined below, some continuity properties are needed. It would
suffice to assume thde is a Hausdorff spaced = B(?) its Borel o-algebra,
and to require that the involde measures are Radon measu8&)f(Berg
et al, 1984). In physical applications the value spaces of observables are usually,
if not always, equipped with locally compact metrisable and separable topolo-
gies. In Ludwig (1983) some operational justification for that structure of a value
space is also given. The measures on the Beralgebras of such spaces are
automatically Radon measures (Halmos, 1950). In particular, this is the case
for (22, B(R2)) being the real or complex Borel spac& B(R)), (C, B(C)), or
their n-fold Cartesian products. To avoid the technical assumptions on Radon
measures, | assume from nowon that the value spaces of the observables are
locally compact metrisable and separable topological spamed, for short, |
call them simplyBorel spacesWhere this assumption is superfluous, | go on
to use the notation¢t, .A) to emphasize that no topological assumptions are
needed.
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Let (21, B(21)) and €2, B(£22)) be two Borel spaces, and 18(21 x )
denote the Borak-algebra of2; x Q.

Definition 2.5. Observable€; : B(21) — L(H) andE; : B(22) — L(H) have
a joint observable if there is an observable B(21 x Q22) — L(H) such that for
all X € B(R21), Y € B(22),

E1(X) = F(X x Q2), (1)
Ex(Y) = F(Q1 x Y). )

Theorem 2.6. Let (21, B(21)) and (22, B(£22)) be two Borel spaces. For any
two observables E B(Q21) — L(H)and B : B(22) — L(H) the following three
conditions are equivalent:

(i) E; and B have a biobservable;
(i) E; and E, have a joint observable;
(i) E; and E are functionally coexistent.

Proof: (i) = (ii). Let B be a biobservable associated wiEhandE,. Then, for
anyg € H, the bimeasur&X x Y — (¢|B(X, Y)g) determines a unique measure
w(B, @) on (21 x 22, B(21 x ©25)) such that for allX € B(21), Y € B(£22),

(B, 9)(X x Y) = (¢p|B(X, Y)gp)

(see Theorem 1.10 of Bery al,, 1984, p. 24). Puttind,, ,(Z) = u(B, ¢)(Z) for
allp € H, Z € B(21 x Q22), one defines through the polarization identity and the
Fréchet—Riesz theorem an observableB(2; x Q2) — L(H) with the property

F(X x Q) = B(X, Q2) = E1(X),
F(Q1 x Y) = B(Q1,Y) = Ex(Y),

for all X € B(Q1), Y € B(22). (ii) = (ii)). Let now F be a joint observable of
E: and E,, and letz; and 7, be the respective coordinate projectioRsg x
Qy — Q1, Q1 x Qp — Q2. ThenEy(X) = F(r; (X)) andEx(Y) = F(r, *(Y)),
showing thatE; and E, are functionally coexistent. (i} (i). If Ei(X) =
E(f,1(X)) and Ex(Y) = E(f, }(Y)), for some observabl& : B(Q) — L(H),
and some Borel functionsf; : Q — Qi,i = 1,2, then (¢|B(X, Y)y) :=
E,o(fH(X) N f,1(Y)), X € B(Q1), Y € B(Q), ¢ € H, defines a biobservable
B with the desired properties. O

Example 2.7. Assume that the observablly and E, are mutually commuting,
that is,E1(X)E2(Y) = Ex(Y)E1(X) for all X € B(21), Y € B(22). The map

(X,Y) > E(X,Y) = Ei(X)Ex(Y),
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is then a biobservable. Indedd(21, 22) = |, whereas the positivity dE(X, Y)
follows from the commutativity and positivity d&;(X) andEx(Y). The measure
properties oE; andE; and the (weak) continuity of the operator productimply that
the partial functionsX — E(X, Y), Y € B(Q22), andY — E(X,Y), X € B(221),

are positive operator measures. Theorem 2.6 thus implies that any two mutu-
ally commuting observables have a joint observable and they are functionally
coexistent. The mutual commutativity &; and E, is, however, not necessary

for any of the conditions of that theorem, as will become evident in subsequent
discussion.

Remark 2.8. There is an alternative formulation of functional coexistence of
observables, which actually goes back to Ludwig (1983, D.3.1, p. 153). Indeed,
one could say that observablgs and E;, are functionally coexistent if there is

an observableE ando-homomorphism$; : B(22;) — B(R2) andh, : 5(2;) —

B(£2) such thatE; (X) = E(h1(X)) and Ex(Y) = E(h2(Y)) for every X andY. If
thisis the case, then the may,(Y) — E(h1(X) N hy(Y)) is a bimeasure, and thus

E; andE; are functionally coexistent also in the sense of Definition 2.1.

3. REGULARLY COEXISTENT OBSERVABLES

In a realist interpretation of quantum mechanics the notion of regular effect
is an important one: A nontrivial effe® is regular if its spectrum extends both
below as well as above the valéeFor a further analysis of this notion the reader
may consult (Busclet al, 1997). Its relevance here follows from that fact that
regular observables are characterized by their Boolean range.

Definition 3.7. AnobservableéE : A — L(H) is called regular, if foranX € A,
such thatO # E(X) # I,

E(X) # %I, %I % E(X).

Clearly, an observablE is regular if and only if for anyO # E(X) # | neither
E(X) < E(X) nor E(X) < E(X).

Lemma 3.2. Let E : A— L(H) be a regular observable. IfA;)icy C ran
(E) is a summable sequence, that ig,4A- - - + Ay < | for each ne N, then
suby,..{A1 + - -- + An} € ran (E). Moreoverran(E) is a Boolean algebra (with
respect to the order and complement inhereted from the set of effge})3, and
E is a Booleary-homomorphism A> ran (E).

Proof: The proof follows that of Lahti and Pulmannova (2001, Theorem 4.1).
Let A;, Az € ran (E) be such thatA; + A, < | and assume that; = E(X),
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A, =E(Y). Then X=XNYUMX\(XNY)),Y=XNYU(Y\(XNY)).
HenceE(X NY) < E(X) = A, E(XNY) < E(Y) = Ax.SinceA; < | — Ay, it
follows thatE(X N'Y) < E(X N YY), so that by the regularity assumptide(X N
Y) = O.ThereforeA; = E(Xy) andA, = E(Y1),whereX; := X\(XNY), Y =
Y\(X N Y) are disjoint sets. So we gét; + A, = E(X1) + E(Y1) = E(X U
Y;) € ran (E). We note also thaX NY; =@ and A; + A, = E(X U Y3). This
observation will be used in the next paragraph.

Assume next that4j)icy is @ summable sequence in raB)( Using the
above argument, we find disjoint séfg, X, such thatA; = E(X3), Ax = E(X2).
Now we proceed by induction. Assume that we have already found disjoint sets
X1, ..., Xp_g suchthathy = E(X;),i =1,...,n—1. ThenA; +--- + A1 =
E(X1U X5 U. ..U Xp_1). By the summability assumptiold{ + - -- + An_1) <
I — A,. Therefore, there is a séf, € A suchthat K; U ... U X,_1) N Xy =6,
and A, = E(Xp). Thus we find a sequence,i € N, of disjoint sets such that
A = E(Xi), i € N. Fromther-additivity of E we obtainE(U; Xi) = ), E(X;) =
> Ai, which shows that ran H) is closed under sums of summable
sequences.

Let E(X), E(Y) € ran (E). We will prove that

E(XNY) = E(X) Aran(E) E(Y),

thatis,E : A — ran (E) is aA-morphism. EvidentlyE(X NY) < E(X), E(Y).
Assume that for somg € A, E(Z) < E(X), E(Y). We canwriteZ = (ZN XN
Y)U(ZnN(XNY)). Moreover,

E(ZN(XNY))=EZnN (X' UY))
=E(@ZnX' NY)u@ZnX NY)Yu(ZNnXNY)
=E@ZnNnXNY)+E(ZnNX NY)+E(ZNnXNY")
E(Z) < E(X), E(Y).

IA

Butwealsohav&(ZN X' NY) < E(X), E(ZNXNY) < EY),E(ZN X'N

Y) < E(X), E(Y), so that the effectE(ZN X' NY), E(XN X" NY’), and
E(Z N X NY’)areirregular and thus equ@l. Therefore als&(Z N (X NY)) =

O. Thus E(Z) = E(ZNn XNY) < E(XNY). This concludes the proof that
E(XNY) = E(X) Arang) E(Y). By de Morgan laws one gets the dual result: for
anyX,Y € A, E(XUY) = E(X) Viang) E(Y). Moreover, if the setX andY are
disjoint, thenE(X) Viang) E(Y) = E(X) + E(Y). Also, if (X;) C A is a disjoint
sequence, then

E(U2y Xi) =Y E(X)=\/ {E(X)li e N}.

i=1 ran(E)
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To prove that rank) is a Boolean algebra, it remains to prove distributivity.
This follows immediately from the fact th& is aA-morphism and &-morphism
from a Boolean set. O

Corollary 3.1. The range ran (E) of an observable E is a Boolean algebra (with
the ordering inherited frong ()) if and only if E is regular.

Proof: We have to prove the “only if” part. Hence, assume that r&h i¢
Boolean, and leE(X) be an irregular element. Thda(X) < E(X)’, which in
a Boolean algebra implies th&t X) = 0. O

Theorem 3.3. For any two observables E B(Q21) — L(H) and E : B(22) —
L(H), if there is a regular observable EB(R2) — L(H) such thatan (E;) U ran
(E2) Cran (E), then | and E are functionally coexistent.

Proof: If E is regular, then from ranE;) U ran (E2) C ran (E) it follows that
also E; and E; are regular. Therefore, by Lemma 3.2, all the ranges Ea, (
ran (E2), ran (E) are Boolean. From this and from the fact that r&j)(U ran
(E2) < ran (E) it then follows that the mapX, Y) — Ei(X) Arang) E2(Y) is a
biobservable oE; and E,. Indeed, for a fixedl € B(€2y), if (X;) € B(Q21) is a
disjoint sequence, then

E1(UXi) Arang) E2(Y) = (Z El(xi)) AranE) E2(Y)

= (D2 E(Zx)) Ay E2(V)

< \/ E(in)> AranE) E2(Y)

ran(E)
\/ (E(Xi) Aran(E) Ex(Y)),
ran(E)

where ¢x,) C B(2) is a disjoint sequence such tha{Zx,) = E1(X;) (which
exists sinceE(X;)) C ran (E) is summable). Similarly, one shows that for a fixed
X € B(Q4), if (Vi) C B(R2,) is a disjoint sequence, then

El(x) Aran(E) EZ(UYi) = \/ (E(X) Aran(E) EZ(Yi ))
ran(E)

Theorem 2.6 now assures thHat and E, are functionally coexistent. O

In the context of the above theorem we say that observdblesd E, are
regularly coexistentWe may then say that regularly coexistent observables are
functionally coexistent.
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4. PROJECTION AS A VALUE OF AN OBSERVABLE

Projection-valued observables are known to have very special properties. For
the coexistence of two observables the fact that one of them is projection-valued
implies great simplifications. | start with quoting a well-known result.

Lemma 4.1. For any positive operator measure :EA; — L(H), if E(X)? =
E(X) for some Xe A, then EX)E(Y) = E(Y)E(X) forall Y € A.

Proof: Assume thaE(X)? = E(X) for someX € A. ForanyY € A, XNY C
Y,sothatE(Y) = E(Y\(X NY)) + E(XNY),andE(X) + E(Y) — E(XNY) =
E(X) + E(Y\(XNY)) = E(XUY) < |. Therefore, the effect&E(X NY) and
E(Y\(X NY)) are below the projectionE(X) and | — E(X), respectively, so
that

E(XNY) = E(X)E(X NY)E(X),
E(Y\(Y N X)) = (I = EQX)DEY\(Y N X))(I — E(X).

Therefore, E(Y) = E(YA(XNY))+ E(XNY)=EX)E(XNY)E(X)+ (I —
E(X)E(Y\(Y N X))(I — E(X), which gives through multiplication bl (X) that
E(X)E(Y) = E(Y)E(X). O

Corollary 4.2. Assume that E: A; — £L(H) and & : A, — L(H) are coex-
istent observables. If one of them is projection-valued, then they are mutually
commuting and hence functionally coexistent.

Proof: Assume thatE; is projection-valued. Sinc&; and E, are coexistent,
Lemma 4.1 implies thaE; and E; are commutingE1(X)Ex(Y) = E2(Y)E1(X)
forall X € A1, Y € A,. Thusthemapl; x Ay 3 (X,Y) = Ei(X)Ex(Y) € L(H)
determines a biobservable Bf andE,, so that, by Theorem 2.6, observables
andE; are functionally coexistent. g

5. COMMENSURABILITY

For projection-valued observables the following notion of commensurability,
or compatibility, is a further specification of the notion of coexistence. These
notions were widely used in the so-called quantum logic approaches to quantum
mechanics (see, for instance, Beltrametti and Cassinelli, 1981; Mittelstaedt, 1978;
Varadarajan, 1985).

Definition 5.1. Projection-valued observablés : A — L(H) andE, : A; —
L(H) are commensurable, if there is a projection-valued obseniahlel —
L(H) such that rank;) U ran (Ez) < ran (E).
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Theorem 5.2. Any two projection-valued observables E5(21) — L(H) and
E, : B(Q2) — L(H) are coexistent if and only if they are commensurable.

Proof: Assume thaE; andE; are coexistent projection-valued observables. By
Lemma 4.1 they are mutally commuting. Therefoné, {) — Ei1(X)Ex(Y) is a
projection operator bimeasure, so that there is a joint projection-valued observ-
ableE : B(Q1 x Q) — L(H) suchthatE(X x 25) = E1(X) andE(Q2; x Y) =
E,(Y). ThusE; and E; are commensurable. By definition, commensurable ob-
servables are coexistent. O

Any two coexistent projection-valued observablesand E, are mutually
commuting:

E1(X)Ex(Y) = Ex(Y)E1(X) forall X e Ai, Y € A,. A3)

The pioneering result of von Neumann (1955) on commuting self-adjoint operators
gives that any two mutually commuting projection-valued observables are (Borel)
functions of a third projection-valued observable. We collect these results in the
following corollary.

Corollary 5.3.  Let (21, B(21)) and (22, B(£22)) be two Borel spaces. For any
two projection-valued observableg EB(21) — L(H)and & : B(R22) — L(H)
the following six conditions are equivalent:

() E;and B commute;
(i) E; and E, are commensurable;
(i) E; and E are coexistent;
(iv) E;and E are functionally coexistent;
(v) E; and E, have a biobservable;
(vi) E; and E, have a joint observable.

For projection-valued observabl&s and E,, their commutativity, or coex-
istence, or any of the above equivalent formulations, has a natural generalization
to a partial commutativity, or partial coexistence. | shall review this question next,
the basic results are due to (Hardegree, 1977; Pulmanid®80; Ylinen, 1985).

Definition 5.4. For any two projection-valued observabesandE,, their com-
mutativity domain comE;, E,) consists of those vectogse H for which

E1(X)E2(Y)e = E2(Y)Ei(X)e (4)

for all X € A;,Y € A,. We say thatE; and E; are commutative if comHK;y,
E,) = H and totally noncommutative if conif, E,) = {0}.



902 Lahti

Lemma 5.5. For any two projection-valued observables &d E their com-
mutativity domain coniE;, E;) is a closed subspace &f and it reduces Eand
E,, thatis, for any Xe A, Y € Ay,

E1(X)(com (E1, E2)) € com (Es, E»),
Ex(Y)(com (Ey, E2)) € com (Ey, Ep).

Proof: The first claim follows since conHj, E,) can be expressed as the inter-
section of closed subspaces,

com (B, Ez) = Nx,v{p € HI(E1(X)Ea(Y) — E2(Y)E1(X))e = O}.

Let ¢ € com (E1, E,). Then for anyZ € A;, E1(Z)¢ € com (Ey, E»), since, for
all X € A1, Y € Ay,

E2(Y)E1(X)E1(Z2)¢ = E2(Y)Es(X N Z)p = Eo(X N Z)Ex(Y)e
= E1(X)E1(Z2)Ex(Y)e = E1(X)E2(Y)E1(Z)e.
Similarly, one get€,(Y) (com (E1, E2)) € com (E1, Ep) foreachY € A,. O

Theorem 5.6. Consider two projection-valued observables ahd E defined
on the Borel spacd$21, B(€21)) and(22, B(£22)), respectively. For any unit vector
¢ € H, the following conditions are equivalent:

(1) ¢ € com (&, Ey),
(i) there is a probability measure : B(21 x Q2) — [0, 1] such that

(X xY) = (p|Es(X)E2(Y)p) = (o E1(X) A E2(Y)e)
forall X € B(1), Y € B(2>).

Proof: The restrictionsE; and E; of E; and E, on com 1, E;) are mutu-
ally commuting spectral measures, so that, by Corollary 5.3, theXnapy’ —
El(X) Ea(Y) = E1(X) A Ex(Y) extends to a joint projection-valued observable
F:B(Q1 x Q) — L(com (Es, E2)). But then, for anyp € com (Ey, E;), and

X € B(Q1), Y € B(Q2), F, (X x Y) = (| EL(X)Ex(Y)e) = (9E1(X)Ex(Y)e),
which concludes the proof. O

Remark 5.7. Let A andB be any two self-adjoint operators #i. According to

the spectral theorem for self-adjoint operators, there are unique spectral measures
EA andEB, defined on the real Borel spac@ 3(R)) and taking values i ()

such thatA and B are their respective first moment operators. By definitian,

and B commute if and only if all their spectral projectidd®(X) and EB(Y),

X, Y € B(R)), commute. By a well-known theorem of von Neumann (1955),
this is the case exactly when there is a self-adjoint opel@tand real Borel
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function f andg such thatA = f(C), B = g(C), that is,EA(X) = E¢(f ~1(X))

and EB(Y) = E€(g1(Y)) for all X, Y € B(R)). We recall further that ifA and

B are bounded self-adjoint operators, then their commutativity is equivalent with
the fact thatAB = BA.

6. SEQUENTIAL MEASUREMENTS

Let7 (H) denote the set of trace class operatorgfand letS() denote its
subset of positive trace one operators, the states of the quantum system associated
with H. Let £(7 (H)) denote the set of (trace norm) bounded linear operators on
7T (H), which is a complex Banach space with respect to the trace nornt2l_et)
be a measurable space. A functibn A — £(7 (H)) is aninstrumentif for all
T € S(H) the function

A X t[Z(X)(T)] e C
is a probability measure. It follows that the functidh— E(X), defined through
tr[TE(X)] := tr[Z(X)(T)], XeA, TeSMH),

is an observablel — L(H), theassociate observablef Z. It is another matter
of fact that each observableis the associate observable of some instruménts
such instruments are calld&tcompatible.

Consideranytwoinstrumerifs : A; — L£(7 (H))andZ; : A; — L(7 (H)),
and letE; andE; be their associate observables. For etch S(H) the function

A1 x Az 3 (X, Y) = pur (X, Y) i= t[Zy(X)(Z2(Y)(T))] € [0, 1]

is a probability bimeasure. By the dualifyH)* = L(H), the bimeasuresr, T €
7 (H), define a positive operator bimeasBe A; x A, — L(H) such that

tr[TB(X1 Y)] = /’LT(X! Y),

forall T € S(H), X € A1, Y € A,. The partial positive operator measukgg and
E, associated wittR, and$,, respectively, are easily seen to be the observables

Ea,(Y) i= B(Q1,Y) = Ex(Y), Y €4, (5)
E®(X) = B(X, Q2) = Zo(Q2)"(E(X)), X € AL, (6)

where we have used the dual transformafigff2,)* : L(H) — L(H) of the state
transformatiorZ,(2,) : 7(H) — 7 (H); forall T € S(H), A € L(H)

tr[TZa(22)" (A)] = tr[Z2(22)(T) Al

We recall that using the dual transfornier: X — Z(X)*, X € A, the associate
observablés of Z can be expressed B$X) = Z(X)*(1), X € A(see, forinstance,
Davies (1976)).
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The above construction of biobservables shows that any two instrumbents
andZ,, defined on the Borel spaceQq, B(21)) and 2, B($22)), respectively,
give rise to a pair of observables for which any of the conditions of Theorem 2.6
is satisfied. These observables depend on the order in which the instruments are
applied:

tr[TB1(X, Y)] := tr[Zo(X)(Zo(Y)(T))], ()
tr[TB12(X, Y)] := tr[Zo(Y)(Z1(X)(T))]- ®)

In the first case these observables are those given in (5) and (6), in the second case
they are given by

B12(21, Y) = Z1(Q1)"(E2(Y)), Y € B(2), )
Bia(X, Q2) = E1(X), X € B(R). (10)

Usually, the sequential biobservablBg and B, are different. However, it may
happen that they are the same, thaBig, = B,;. In such a case the observables
E; andE; are, by Theorem 2.6, functionally coexistent.

7. JOINT MEASURABILITY

A measurement scheme for a quantum system associated with a Hilbert
spaceH is a 4-tupleM = (K, W, P, V) consisting of a (complex separable)
Hilbert spacéeC (describing the measuring apparatus), a stdte S(K) (the ini-
tial state of the apparatus), an observableA — L(K) (the pointer observable),
and a state transformatidh: 7(H ® K) — 7 (H ® K) (a positive trace preserv-
ing map which models the measurement coupling). A measurement scheme
determines an observatie™ : A — £(H) through the relation:

tr[TEM(X)] =tr[V(T@W)I @ P(X)], T eSMH), XedA.

This observable is the observable measured by the schéniies a basic result of
the quantum theory of measurement that for each obsertzablé — L(H) there

is a measurement schemé such thate = EM (Ozawa, 1984). A measurement
schemeM also determines an instrumeft!:

TMT) = tre(V(T @ W)l ® P(X)), T eS(H), XedA,

where ti: : 7(H ® K) — 7 (H) is the partial trace over the apparatus Hilbert
space. Clearly, EM is the associate observableZf!.

Consider now any two observablEg andE; (of the system with the Hilbert
spacd). We say thaE; andE, can bemeasured togethéfithere is ameasurement
schemeM and two Borel functions (pointer function$) and f, such that

Ei(X) = EM(f7H(X),  Xed,
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Ex(Y) = EM(f, (YY), YedA.

It is an immediate observation that the observalilgsnd E> can be measured

together in the above sense if and only if they are functionally coexistent.
Consider next any two measurement scheows and M,. They can be

applied sequentially, in either order: fitdt; and thenMy, or first M, and then

M 3. This corresponds to the application of the instruménté andZ*z one

after the other, in either order. The resulting sequential biobservablemd B,

are obtained from Eqgs. (7) and (8). In general, the result of such a sequential

measurement depends on the order in which the two measurements are performed.

It may happen, however, that the measurements in question are commutative in the

sense that their sequential application is order-independent. The obse&ables

and EMz2 determined by such measurement schemes are functionally coexistent.

As is well known, it is highly exceptional that two measurement scheesnd

M, are commutative in this sense.
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