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1. INTRODUCTION: COEXISTENT OBSERVABLES

The question on the possibility of measuring together two or more physi-
cal quantities lies at the hearth of quantum mechanics. Various notions and for-
mulations have been employed to investigate this issue. von Neumann’s (1955)
analysis of simultaneous measurability of physical quantities in terms of commuta-
tivity of the self-adjoint operators representing those quantities is the starting point
of much of the subsequent work. In particular, the investigations of Varadarajan
(1962), Gudder (1968), Hardegree (1977), Pulmannov´a (1980), and Ylinen (1985)
constitute an important line of research following von Neumann’s approach.

The representation of observables as positive operator measures forces one to
go beyond von Neumann’s framework. Moreover, the simultaneity of the involved
measurements, that is, the fact that the measurements are performed at the same
time point, is, perhaps, not the most crucial aspect of this problem. Therefore,
in that wider context, the notion of coexistence of observables has been chosen
to describe the physical possibility of measuring together two or more quantities.
This concept is due to G¨unther Ludwig (1964) and it was further elaborated e.g., in
Ludwig (1967), Hellwig (1969), Neumann (1970), and Kraus (1983). An extensive
operational analysis of this notion is presented in Ludwig (1983).

1 This paper was presented at Quantum Composite Systems 2002, Ustron, Poland, Sept. 3–7, 2002.
2 Department of Physics, University of Turku, FIN-20014 Turku, Finland; e-mail: pekka.lahti@utu.fi.
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LetH be a complex separable Hilbert space,L(H) the set of bounded oper-
ators onH, Ä a nonempty set, andA a sigma algebra of subsets ofÄ. We call a
positive normalized operator measureE : A→ L(H) an observable and we refer
to (Ä,A) as the value space ofE.

Let E, E1, and E2 be any three observables with the value spaces (Ä,A),
(Ä1,A1), and (Ä2,A2), let ran (E) = {E(X)|X ∈ A} denote the range ofE.

Definition 1.1. ObservablesE1 :A1→ L(H) andE2 :A2→ L(H) are coexistent
if there is an observableE: A→ L(H) such that

ran (E1) ∪ ran (E2) ⊆ ran (E),

that is, for eachX ∈ A1, andY ∈ A2, E1(X) = E(ZX), andE2(Y) = E(ZY) for
someZX, ZY ∈ A.

The notion of coexistence of observables is a rather general notion and it
seems to be open to characterizations only under further specifications. They will
be studied next.

2. FUNCTIONALLY COEXISTENT OBSERVABLES

Definition 2.1. ObservablesE1 :A1→ L(H) andE2 :A2→ L(H) are functions
of an observableE :A→ L(H) if there are (measurable) functionsf1 :Ä→ Ä1

and f2 : Ä→ Ä2 such that for eachX ∈ A1, Y ∈ A2,

E1(X) = E( f −1
1 (X)), E2(Y) = E( f −1

2 (Y)).

In that case we say thatE1 andE2 are functionally coexistent.

As an immediate observation, one has the following proposition:

Proposition 2.2. Functionally coexistent observables are coexistent.

It is an open question whether coexistent observables are functionally co-
existent. In what follows we shall investigate conditions under which coexistent
observables are functionally coexistent and we shall work out some characteriza-
tions for functional coexistence. We start with another simple observation.

Proposition 2.3. Two-valued observables E1 and E2 are coexistent if and only
if they are functionally coexistent.

Proof: To demonstrate this fact, let{ω, ω′} and {ξ, ξ ′} be two point value
sets of the observablesE1 and E2, with ran (E1) = {O, A1, I − A1, I } and ran
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(E2) = {O, A2, I − A2, I }, respectively, and letE be an observable such that
E(X) = A1 and E(Y) = A2. Consider the partitionR = {X ∩ Y, X′ ∩ Y, X ∩
Y′, X′ ∩ Y′} of the value spaceÄ of E into disjointA-sets, and let 17→ E(X ∩
Y), 2 7→ E(X′ ∩ Y), 3 7→ E(X ∩ Y′), 4 7→ E(X′ ∩ Y′) constitute a correspond-
ing coarsegrained observableER of E. The mapsf1 : 1, 3 7→ ω; 2, 4 7→ ω′, and
f2 : 1, 2 7→ ξ ; 3, 4 7→ ξ ′, allow one to writeA1 = ER( f −1

1 (ω)) = E(X ∩ Y)+
E(X ∩ Y′) and A2 = ER( f −1

2 (ξ )) = E(X ∩ Y)+ E(X′ ∩ Y), showing that the
two-valued observables are functionally coexistent. ¤

Let (Ä1×Ä2,A1×A2) denote the product space of the measurable spaces
(Ä1,A1) and (Ä2,A2), withA1×A2 = {(X, Y)|X ∈ A1, Y ∈ A2}.

Definition 2.4. A positive operator functionB : A1×A2→ L(H) is a positive
operator bimeasure, if for eachX ∈ A1, Y ∈ A2 the partial functions

A2 3 Y 7→ B(X, Y) ∈ L(H),

A1 3 X 7→ B(X, Y) ∈ L(H),

are positive operator measures. IfB(Ä1,Ä2) = I , we say thatB is a biobserv-
able. ObservablesE1 : A1 7→ L(H) and E2 : A2→ L(H) have a biobservable
if there is a positive operator bimeasureB : A1×A2→ L(H) such that for all
X ∈ A1, Y ∈ A2,

E1(X) = B(X,Ä2),

E2(Y) = B(Ä1, Y).

To combine observables into new observables, biobservables, or joint ob-
servables, to be defined below, some continuity properties are needed. It would
suffice to assume thatÄ is a Hausdorff space,A = B(Ä) its Borel σ -algebra,
and to require that the involde measures are Radon measures ofB(Ä) (Berg
et al., 1984). In physical applications the value spaces of observables are usually,
if not always, equipped with locally compact metrisable and separable topolo-
gies. In Ludwig (1983) some operational justification for that structure of a value
space is also given. The measures on the Borelσ -algebras of such spaces are
automatically Radon measures (Halmos, 1950). In particular, this is the case
for (Ä, B(Ä)) being the real or complex Borel spaces (R, B(R)), (C, B(C)), or
their n-fold Cartesian products. To avoid the technical assumptions on Radon
measures, I assume from nowon that the value spaces of the observables are
locally compact metrisable and separable topological spacesand, for short, I
call them simplyBorel spaces. Where this assumption is superfluous, I go on
to use the notation (Ä,A) to emphasize that no topological assumptions are
needed.
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Let (Ä1, B(Ä1)) and (Ä2, B(Ä2)) be two Borel spaces, and letB(Ä1×Ä2)
denote the Borelσ -algebra ofÄ1×Ä2.

Definition 2.5. ObservablesE1 : B(Ä1)→ L(H) andE2 : B(Ä2)→ L(H) have
a joint observable if there is an observableF : B(Ä1×Ä2)→ L(H) such that for
all X ∈ B(Ä1), Y ∈ B(Ä2),

E1(X) = F(X ×Ä2), (1)

E2(Y) = F(Ä1× Y). (2)

Theorem 2.6. Let (Ä1, B(Ä1)) and (Ä2, B(Ä2)) be two Borel spaces. For any
two observables E1 : B(Ä1)→ L(H) and E2 : B(Ä2)→ L(H) the following three
conditions are equivalent:

(i) E1 and E2 have a biobservable;
(ii) E1 and E2 have a joint observable;

(iii) E1 and E2 are functionally coexistent.

Proof: (i)⇒ (ii). Let B be a biobservable associated withE1 andE2. Then, for
anyϕ ∈ H, the bimeasureX × Y 7→ 〈ϕ|B(X, Y)ϕ〉 determines a unique measure
µ(B, ϕ) on (Ä1×Ä2, B(Ä1×Ä2)) such that for allX ∈ B(Ä1), Y ∈ B(Ä2),

µ(B, ϕ)(X × Y) = 〈ϕ|B(X, Y)ϕ〉
(see Theorem 1.10 of Berget al., 1984, p. 24). PuttingFϕ,ϕ(Z) = µ(B, ϕ)(Z) for
all ϕ ∈ H, Z ∈ B(Ä1×Ä2), one defines through the polarization identity and the
Frèchet–Riesz theorem an observableF : B(Ä1×Ä2)→ L(H) with the property

F(X ×Ä2) = B(X,Ä2) = E1(X),

F(Ä1× Y) = B(Ä1, Y) = E2(Y),

for all X ∈ B(Ä1), Y ∈ B(Ä2). (ii) ⇒ (iii). Let now F be a joint observable of
E1 and E2, and letπ1 and π2 be the respective coordinate projectionsÄ1×
Ä2→ Ä1,Ä1×Ä2→ Ä2. ThenE1(X) = F(π−1

1 (X)) andE2(Y) = F(π−1
2 (Y)),

showing thatE1 and E2 are functionally coexistent. (iii)⇒ (i). If E1(X) =
E( f −1

1 (X)) and E2(Y) = E( f −1
2 (Y)), for some observableE : B(Ä)→ L(H),

and some Borel functionsfi : Ä→ Äi , i = 1, 2, then 〈ϕ|B(X, Y)ϕ〉 :=
Eϕ,ϕ( f −1

1 (X) ∩ f −1
2 (Y)), X ∈ B(Ä1), Y ∈ B(Ä2), ϕ ∈ H, defines a biobservable

B with the desired properties. ¤

Example 2.7. Assume that the observableE1 and E2 are mutually commuting,
that is,E1(X)E2(Y) = E2(Y)E1(X) for all X ∈ B(Ä1), Y ∈ B(Ä2). The map

(X, Y) 7→ E(X, Y) := E1(X)E2(Y),
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is then a biobservable. Indeed,E(Ä1,Ä2) = I , whereas the positivity ofE(X, Y)
follows from the commutativity and positivity ofE1(X) andE2(Y). The measure
properties ofE1 andE2 and the (weak) continuity of the operator product imply that
the partial functionsX 7→ E(X, Y), Y ∈ B(Ä2), andY 7→ E(X, Y), X ∈ B(Ä1),
are positive operator measures. Theorem 2.6 thus implies that any two mutu-
ally commuting observables have a joint observable and they are functionally
coexistent. The mutual commutativity ofE1 and E2 is, however, not necessary
for any of the conditions of that theorem, as will become evident in subsequent
discussion.

Remark 2.8. There is an alternative formulation of functional coexistence of
observables, which actually goes back to Ludwig (1983, D.3.1, p. 153). Indeed,
one could say that observablesE1 and E2 are functionally coexistent if there is
an observablesE andσ -homomorphismsh1 : B(Ä1)→ B(Ä) andh2 : B(Ä2)→
B(Ä) such thatE1(X) = E(h1(X)) andE2(Y) = E(h2(Y)) for everyX andY. If
this is the case, then the map (X, Y) 7→ E(h1(X) ∩ h2(Y)) is a bimeasure, and thus
E1 andE2 are functionally coexistent also in the sense of Definition 2.1.

3. REGULARLY COEXISTENT OBSERVABLES

In a realist interpretation of quantum mechanics the notion of regular effect
is an important one: A nontrivial effectB is regular if its spectrum extends both
below as well as above the value1

2. For a further analysis of this notion the reader
may consult (Buschet al., 1997). Its relevance here follows from that fact that
regular observables are characterized by their Boolean range.

Definition 3.7. An observableE :A→ L(H) is called regular, if for anyX ∈ A,
such thatO 6= E(X) 6= I ,

E(X) 6≤ 1

2
I ,

1

2
I 6≤ E(X).

Clearly, an observableE is regular if and only if for anyO 6= E(X) 6= I neither
E(X) ≤ E(X)′ nor E(X)′ ≤ E(X).

Lemma 3.2. Let E : A→ L(H) be a regular observable. If(Ai )i∈N ⊂ ran
(E) is a summable sequence, that is, A1+ · · · + An ≤ I for each n∈ N, then
subpn∈N{A1+ · · · + An} ∈ ran (E). Moreover,ran(E) is a Boolean algebra (with
respect to the order and complement inhereted from the set of effectsE(H)), and
E is a Booleanσ -homomorphism A→ ran (E).

Proof: The proof follows that of Lahti and Pulmannova (2001, Theorem 4.1).
Let A1, A2 ∈ ran (E) be such thatA1+ A2 ≤ I and assume thatA1 = E(X),
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A2 = E(Y). Then X = X ∩ Y ∪ (X\(X ∩ Y)), Y = X ∩ Y ∪ (Y\(X ∩ Y)).
HenceE(X ∩ Y) ≤ E(X) = A1, E(X ∩ Y) ≤ E(Y) = A2. SinceA2 ≤ I − A1, it
follows thatE(X ∩ Y) ≤ E(X ∩ Y)′, so that by the regularity assumption,E(X ∩
Y) = O. ThereforeA1 = E(X1) andA2 = E(Y1), whereX1 := X\(X ∩ Y), Y1 :=
Y\(X ∩ Y) are disjoint sets. So we getA1+ A2 = E(X1)+ E(Y1) = E(X1 ∪
Y1) ∈ ran (E). We note also thatX ∩ Y1 = ∅ and A1+ A2 = E(X ∪ Y1). This
observation will be used in the next paragraph.

Assume next that (Ai )i∈N is a summable sequence in ran (E). Using the
above argument, we find disjoint setsX1, X2 such thatA1 = E(X1), A2 = E(X2).
Now we proceed by induction. Assume that we have already found disjoint sets
X1, . . . , Xn−1 such thatAi = E(Xi ), i = 1, . . . , n− 1. ThenA1+ · · · + An−1 =
E(X1 ∪ X2 ∪ . . . ∪ Xn−1). By the summability assumption (A1+ · · · + An−1) ≤
I − An. Therefore, there is a setXn ∈ A such that (X1 ∪ . . . ∪ Xn−1) ∩ Xn = ∅,
and An = E(Xn). Thus we find a sequenceXi , i ∈ N, of disjoint sets such that
Ai = E(Xi ), i ∈ N. From theσ -additivity of E we obtainE(∪i Xi ) =

∑
i E(Xi ) =∑

i Ai , which shows that ran (E) is closed under sums of summable
sequences.

Let E(X), E(Y) ∈ ran (E). We will prove that

E(X ∩ Y) = E(X) ∧ran(E) E(Y),

that is,E : A→ ran (E) is a∧-morphism. Evidently,E(X ∩ Y) ≤ E(X), E(Y).
Assume that for someZ ∈ A, E(Z) ≤ E(X), E(Y). We can writeZ = (Z ∩ X ∩
Y) ∪ (Z ∩ (X ∩ Y)′). Moreover,

E(Z ∩ (X ∩ Y)′) = E(Z ∩ (X′ ∪ Y′))

= E((Z ∩ X′ ∩ Y) ∪ (Z ∩ X′ ∩ Y′) ∪ (Z ∩ X ∩ Y′))

= E(Z ∩ X′ ∩ Y)+ E((Z ∩ X′ ∩ Y′)+ E((Z ∩ X ∩ Y′))

≤ E(Z) ≤ E(X), E(Y).

But we also haveE(Z ∩ X′ ∩ Y) ≤ E(X′), E(Z ∩ X ∩ Y′) ≤ E(Y′), E(Z ∩ X′ ∩
Y′) ≤ E(X′), E(Y′), so that the effectsE(Z ∩ X′ ∩ Y), E(X ∩ X′ ∩ Y′), and
E(Z ∩ X ∩ Y′) are irregular and thus equalO. Therefore alsoE(Z ∩ (X ∩ Y)′) =
O. Thus E(Z) = E(Z ∩ X ∩ Y) ≤ E(X ∩ Y). This concludes the proof that
E(X ∩ Y) = E(X) ∧ran(E) E(Y). By de Morgan laws one gets the dual result: for
anyX, Y ∈ A, E(X ∪ Y) = E(X) ∨ran(E) E(Y). Moreover, if the setsX andY are
disjoint, thenE(X) ∨ran(E) E(Y) = E(X)+ E(Y). Also, if (Xi ) ⊂ A is a disjoint
sequence, then

E
( ∪∞i=1 Xi

) = ∞∑
i=1

E(Xi ) =
∨

ran(E)

{E(Xi )|i ∈ N}.
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To prove that ran (E) is a Boolean algebra, it remains to prove distributivity.
This follows immediately from the fact thatE is a∧-morphism and a∨-morphism
from a Boolean set. ¤

Corollary 3.1. The range ran (E) of an observable E is a Boolean algebra (with
the ordering inherited fromE(H)) if and only if E is regular.

Proof: We have to prove the “only if” part. Hence, assume that ran (E) is
Boolean, and letE(X) be an irregular element. ThenE(X) ≤ E(X)′, which in
a Boolean algebra implies thatE(X) = 0. ¤

Theorem 3.3. For any two observables E1 : B(Ä1)→ L(H) and E2 : B(Ä2)→
L(H), if there is a regular observable E :B(Ä)→ L(H) such thatran (E1)∪ ran
(E2) ⊆ ran (E), then E1 and E2 are functionally coexistent.

Proof: If E is regular, then from ran (E1) ∪ ran (E2) ⊆ ran (E) it follows that
also E1 and E2 are regular. Therefore, by Lemma 3.2, all the ranges ran (E1),
ran (E2), ran (E) are Boolean. From this and from the fact that ran (E1) ∪ ran
(E2) ⊆ ran (E) it then follows that the map (X, Y) 7→ E1(X) ∧ran(E) E2(Y) is a
biobservable ofE1 and E2. Indeed, for a fixedY ∈ B(Ä2), if ( Xi ) ⊂ B(Ä1) is a
disjoint sequence, then

E1(∪Xi ) ∧ran(E) E2(Y) =
(∑

E1(Xi )
)
∧ran(E) E2(Y)

=
(∑

E(ZXi )
)
∧ran(E) E2(Y)

=
( ∨

ran(E)

E(ZXi )

)
∧ran(E) E2(Y)

=
∨

ran(E)

(E(Xi ) ∧ran(E) E2(Y)),

where (ZXi ) ⊂ B(Ä) is a disjoint sequence such thatE(ZXi ) = E1(Xi ) (which
exists since (E(Xi )) ⊂ ran (E) is summable). Similarly, one shows that for a fixed
X ∈ B(Ä1), if (Yi ) ⊂ B(Ä2) is a disjoint sequence, then

E1(X) ∧ran(E) E2(∪Yi ) =
∨

ran(E)

(E(X) ∧ran(E) E2(Yi )).

Theorem 2.6 now assures thatE1 andE2 are functionally coexistent. ¤

In the context of the above theorem we say that observablesE1 and E2 are
regularly coexistent. We may then say that regularly coexistent observables are
functionally coexistent.
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4. PROJECTION AS A VALUE OF AN OBSERVABLE

Projection-valued observables are known to have very special properties. For
the coexistence of two observables the fact that one of them is projection-valued
implies great simplifications. I start with quoting a well-known result.

Lemma 4.1. For any positive operator measure E: A1→ L(H), if E(X)2 =
E(X) for some X∈ A, then E(X)E(Y) = E(Y)E(X) for all Y ∈ A.

Proof: Assume thatE(X)2 = E(X) for someX ∈ A. For anyY ∈ A, X ∩ Y ⊆
Y, so thatE(Y) = E(Y\(X ∩ Y))+ E(X ∩ Y), andE(X)+ E(Y)− E(X ∩ Y) =
E(X)+ E(Y\(X ∩ Y)) = E(X ∪ Y) ≤ I . Therefore, the effectsE(X ∩ Y) and
E(Y\(X ∩ Y)) are below the projectionsE(X) and I − E(X), respectively, so
that

E(X ∩ Y) = E(X)E(X ∩ Y)E(X),

E(Y\(Y ∩ X)) = (I − E(X))E(Y\(Y ∩ X))(I − E(X).

Therefore, E(Y) = E(Y\(X ∩ Y))+ E(X ∩ Y) = E(X)E(X ∩ Y)E(X)+ (I −
E(X))E(Y\(Y ∩ X))(I − E(X), which gives through multiplication byE(X) that
E(X)E(Y) = E(Y)E(X). ¤

Corollary 4.2. Assume that E1 : A1→ L(H) and E2 : A2→ L(H) are coex-
istent observables. If one of them is projection-valued, then they are mutually
commuting and hence functionally coexistent.

Proof: Assume thatE1 is projection-valued. SinceE1 and E2 are coexistent,
Lemma 4.1 implies thatE1 andE2 are commuting:E1(X)E2(Y) = E2(Y)E1(X)
for all X ∈ A1, Y ∈ A2. Thus the mapA1×A2 3 (X, Y) 7→ E1(X)E2(Y) ∈ L(H)
determines a biobservable ofE1 andE2, so that, by Theorem 2.6, observablesE1

andE2 are functionally coexistent. ¤

5. COMMENSURABILITY

For projection-valued observables the following notion of commensurability,
or compatibility, is a further specification of the notion of coexistence. These
notions were widely used in the so-called quantum logic approaches to quantum
mechanics (see, for instance, Beltrametti and Cassinelli, 1981; Mittelstaedt, 1978;
Varadarajan, 1985).

Definition 5.1. Projection-valued observablesE1 : A→ L(H) and E2 : A2→
L(H) are commensurable, if there is a projection-valued observableE : A→
L(H) such that ran (E1)∪ ran (E2) ⊆ ran (E).
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Theorem 5.2. Any two projection-valued observables E1 : B(Ä1)→ L(H) and
E2 : B(Ä2)→ L(H) are coexistent if and only if they are commensurable.

Proof: Assume thatE1 andE2 are coexistent projection-valued observables. By
Lemma 4.1 they are mutally commuting. Therefore, (X, Y) 7→ E1(X)E2(Y) is a
projection operator bimeasure, so that there is a joint projection-valued observ-
ableE : B(Ä1×Ä2)→ L(H) such thatE(X ×Ä2) = E1(X) andE(Ä1× Y) =
E2(Y). Thus E1 and E2 are commensurable. By definition, commensurable ob-
servables are coexistent. ¤

Any two coexistent projection-valued observablesE1 and E2 are mutually
commuting:

E1(X)E2(Y) = E2(Y)E1(X) for all X ∈ A1, Y ∈ A2. (3)

The pioneering result of von Neumann (1955) on commuting self-adjoint operators
gives that any two mutually commuting projection-valued observables are (Borel)
functions of a third projection-valued observable. We collect these results in the
following corollary.

Corollary 5.3. Let (Ä1, B(Ä1)) and (Ä2, B(Ä2)) be two Borel spaces. For any
two projection-valued observables E1 : B(Ä1)→ L(H) and E2 : B(Ä2)→ L(H)
the following six conditions are equivalent:

(i) E1 and E2 commute;
(ii) E1 and E2 are commensurable;

(iii) E1 and E2 are coexistent;
(iv) E1 and E2 are functionally coexistent;
(v) E1 and E2 have a biobservable;

(vi) E1 and E2 have a joint observable.

For projection-valued observablesE1 andE2, their commutativity, or coex-
istence, or any of the above equivalent formulations, has a natural generalization
to a partial commutativity, or partial coexistence. I shall review this question next,
the basic results are due to (Hardegree, 1977; Pulmannov´a, 1980; Ylinen, 1985).

Definition 5.4. For any two projection-valued observablesE1 andE2, their com-
mutativity domain com (E1, E2) consists of those vectorsϕ ∈ H for which

E1(X)E2(Y)ϕ = E2(Y)E1(X)ϕ (4)

for all X ∈ A1, Y ∈ A2. We say thatE1 and E2 are commutative if com (E1,
E2) = H and totally noncommutative if com (E1, E2) = {0}.
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Lemma 5.5. For any two projection-valued observables E1 and E2 their com-
mutativity domain com(E1, E2) is a closed subspace ofH and it reduces E1 and
E2, that is, for any X∈ A1, Y ∈ A2,

E1(X)(com (E1, E2)) ⊆ com (E1, E2),

E2(Y)(com (E1, E2)) ⊆ com (E1, E2).

Proof: The first claim follows since com (E1, E2) can be expressed as the inter-
section of closed subspaces,

com (E1, E2) = ∩X,Y{ϕ ∈ H|(E1(X)E2(Y)− E2(Y)E1(X))ϕ = 0}.
Let ϕ ∈ com (E1, E2). Then for anyZ ∈ A1, E1(Z)ϕ ∈ com (E1, E2), since, for
all X ∈ A1, Y ∈ A2,

E2(Y)E1(X)E1(Z)ϕ = E2(Y)E1(X ∩ Z)ϕ = E1(X ∩ Z)E2(Y)ϕ

= E1(X)E1(Z)E2(Y)ϕ = E1(X)E2(Y)E1(Z)ϕ.

Similarly, one getsE2(Y) (com (E1, E2)) ⊆ com (E1, E2) for eachY ∈ A2. ¤

Theorem 5.6. Consider two projection-valued observables E1 and E2 defined
on the Borel spaces(Ä1, B(Ä1)) and(Ä2, B(Ä2)), respectively. For any unit vector
ϕ ∈ H, the following conditions are equivalent:

(i) ϕ ∈ com (E1, E2),
(ii) there is a probability measureµ : B(Ä1×Ä2)→ [0, 1] such that

µ(X × Y) = 〈ϕ|E1(X)E2(Y)ϕ〉 = 〈ϕ|E1(X) ∧ E2(Y)ϕ〉
for all X ∈ B(Ä1), Y ∈ B(Ä2).

Proof: The restrictions̃E1 and Ẽ1 of E1 and E2 on com (E1, E2) are mutu-
ally commuting spectral measures, so that, by Corollary 5.3, the mapX × Y 7→
Ẽ1(X)Ẽ2(Y) = Ẽ1(X) ∧ Ẽ2(Y) extends to a joint projection-valued observable
F̃ : B(Ä1×Ä2)→ L(com (E1, E2)). But then, for anyϕ ∈ com (E1, E2), and
X ∈ B(Ä1), Y ∈ B(Ä2), F̃ϕ,ϕ(X × Y) = 〈ϕ|Ẽ1(X)Ẽ2(Y)ϕ〉 = 〈ϕE1(X)E2(Y)ϕ〉,
which concludes the proof. ¤

Remark 5.7. Let A andB be any two self-adjoint operators inH. According to
the spectral theorem for self-adjoint operators, there are unique spectral measures
EA andEB, defined on the real Borel spaces (R, B(R)) and taking values inL(H)
such thatA and B are their respective first moment operators. By definition,A
and B commute if and only if all their spectral projectionEA(X) and EB(Y),
X, Y ∈ B(R)), commute. By a well-known theorem of von Neumann (1955),
this is the case exactly when there is a self-adjoint operatorC and real Borel
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function f andg such thatA = f (C), B = g(C), that is,EA(X) = EC( f −1(X))
and EB(Y) = EC(g−1(Y)) for all X, Y ∈ B(R)). We recall further that ifA and
B are bounded self-adjoint operators, then their commutativity is equivalent with
the fact thatAB= BA.

6. SEQUENTIAL MEASUREMENTS

LetT (H) denote the set of trace class operators onH, and letS(H) denote its
subset of positive trace one operators, the states of the quantum system associated
with H. LetL(T (H)) denote the set of (trace norm) bounded linear operators on
T (H), which is a complex Banach space with respect to the trace norm. Let (Ä,A)
be a measurable space. A functionI : A→ L(T (H)) is an instrumentif for all
T ∈ S(H) the function

A 3 X 7→ tr[I(X)(T)] ∈ C
is a probability measure. It follows that the functionX 7→ E(X), defined through

tr[TE(X)] := tr[I(X)(T)], X ∈ A, T ∈ S(H),

is an observableA→ L(H), theassociate observableof I. It is another matter
of fact that each observableE is the associate observable of some instrumentsI;
such instruments are calledE-compatible.

Consider any two instrumentsI1 : A1→ L(T (H)) andI2 : A2→ L(T (H)),
and letE1 andE2 be their associate observables. For eachT ∈ S(H) the function

A1×A2 3 (X, Y) 7→ µT (X, Y) := tr[I1(X)(I2(Y)(T))] ∈ [0, 1]

is a probability bimeasure. By the dualityT (H)∗ ∼= L(H), the bimeasuresµT , T ∈
T (H), define a positive operator bimeasureB : A1×A2→ L(H) such that

tr[TB(X, Y)] = µT (X, Y),

for all T ∈ S(H), X ∈ A1, Y ∈ A2. The partial positive operator measuresEÄ1 and
EÄ2, associated withÄ1 andÄ2, respectively, are easily seen to be the observables

EÄ1(Y) := B(Ä1, Y) = E2(Y), Y ∈ A2, (5)

EÄ2(X) := B(X,Ä2) = I2(Ä2)∗(E1(X)), X ∈ A)1, (6)

where we have used the dual transformationI2(Ä2)∗ : L(H)→ L(H) of the state
transformationI2(Ä2) : T (H)→ T (H); for all T ∈ S(H), A ∈ L(H)

tr[TI2(Ä2)∗(A)] := tr[I2(Ä2)(T)A].

We recall that using the dual transformerI∗ : X 7→ I(X)∗, X ∈ A2, the associate
observableE ofI can be expressed asE(X) = I(X)∗(I ), X ∈ A (see, for instance,
Davies (1976)).
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The above construction of biobservables shows that any two instrumentsI1

andI2, defined on the Borel spaces (Ä1, B(Ä1)) and (Ä2, B(Ä2)), respectively,
give rise to a pair of observables for which any of the conditions of Theorem 2.6
is satisfied. These observables depend on the order in which the instruments are
applied:

tr[TB21(X, Y)] := tr[I1(X)(I2(Y)(T))], (7)

tr[TB12(X, Y)] := tr[I2(Y)(I1(X)(T))]. (8)

In the first case these observables are those given in (5) and (6), in the second case
they are given by

B12(Ä1, Y) = I1(Ä1)∗(E2(Y)), Y ∈ B(Ä2), (9)

B12(X,Ä2) = E1(X), X ∈ B(Ä2). (10)

Usually, the sequential biobservablesB21 andB12 are different. However, it may
happen that they are the same, that is,B12 = B21. In such a case the observables
E1 andE2 are, by Theorem 2.6, functionally coexistent.

7. JOINT MEASURABILITY

A measurement scheme for a quantum system associated with a Hilbert
spaceH is a 4-tupleM := 〈K, W, P, V〉 consisting of a (complex separable)
Hilbert spaceK (describing the measuring apparatus), a stateW ∈ S(K) (the ini-
tial state of the apparatus), an observableP : A→ L(K) (the pointer observable),
and a state transformationV : T (H⊗K)→ T (H⊗K) (a positive trace preserv-
ing map which models the measurement coupling). A measurement schemeM
determines an observableEM : A→ L(H) through the relation:

tr[TEM(X)] = tr[V(T ⊗W)I ⊗ P(X)], T ∈ S(H), X ∈ A.
This observable is the observable measured by the schemeM. It is a basic result of
the quantum theory of measurement that for each observableE : A→ L(H) there
is a measurement schemeM such thatE = EM (Ozawa, 1984). A measurement
schemeM also determines an instrumentIM:

IM(T) := trK(V(T ⊗W)I ⊗ P(X)), T ∈ S(H), X ∈ A,

where trK : T (H⊗K)→ T (H) is the partial trace over the apparatus Hilbert
spaceK. Clearly,EM is the associate observable ofIM.

Consider now any two observablesE1 andE2 (of the system with the Hilbert
spaceH). We say thatE1 andE2 can bemeasured togetherif there is a measurement
schemeM and two Borel functions (pointer functions)f1 and f2 such that

E1(X) = EM( f −1
1 (X)), X ∈ A1,
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E2(Y) = EM( f −1
2 (Y)), Y ∈ A2.

It is an immediate observation that the observablesE1 and E2 can be measured
together in the above sense if and only if they are functionally coexistent.

Consider next any two measurement schemesM1 andM2. They can be
applied sequentially, in either order: firstM1 and thenM2, or firstM2 and then
M1. This corresponds to the application of the instrumentsIM1 andIM2 one
after the other, in either order. The resulting sequential biobservablesB21 andB12

are obtained from Eqs. (7) and (8). In general, the result of such a sequential
measurement depends on the order in which the two measurements are performed.
It may happen, however, that the measurements in question are commutative in the
sense that their sequential application is order-independent. The observablesEM1

andEM2 determined by such measurement schemes are functionally coexistent.
As is well known, it is highly exceptional that two measurement schemesM1 and
M2 are commutative in this sense.
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